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ABSTRACT 

This study investigates the spatial effects of industrial robot adoption on green total factor productivity (GTFP) 

across 30 provinces in mainland China from 2013 to 2019, using a panel spatial Durbin model (PSDM). 

Drawing on data from national statistical yearbooks and customs databases, the analysis incorporates key 

control variables including trade openness, R&D intensity, energy structure, human capital, and industrial 

structure. The results reveal that robot density significantly improves GTFP both within provinces and through 

spatial spillovers to neighboring regions, underscoring the regional interdependence of technological progress. 

R&D intensity and clean energy use are found to have positive effects, while trade openness is negatively 

associated with GTFP, indicating potential environmental trade-offs in export-led growth. The study contributes 

to the literature on automation, spatial economics, and sustainable development by highlighting how industrial 

robot deployment can support regional green transformation. Policy implications include the promotion of 

coordinated robotics adoption, innovation collaboration, and energy restructuring to enhance sustainable 

productivity across spatially connected economies. 

Keywords: Industrial Robots, Green Total Factor Productivity, Spatial Spillover Effects, Panel Spatial Durbin Model, 

Sustainable Development. 

1. INTRODUCTION  

   Robots are essential for raising living standards and productivity. The majority of robot adoption to date 

has taken place in manufacturing, where machines are made to carry out a wide range of manual jobs more 

reliably and efficiently than people. The usage of robots is expanding into numerous other industries, such as 

logistics, hospitality, and agriculture, thanks to ongoing innovation. As a result, businesses everywhere are 

implementing robots. The International Federation of Robotics reports that the average number of industrial 

robots per 10,000 manufacturing workers around the globe increased from 66 in 2015 to 85 in 2017. With 710 

robots per 10,000 workers, Korea is the largest adopter in the world; the US comes in seventh with 200 robots. 

The number of robots per 10,000 workers is displayed in Figure 1. According to the IFR, global robot 

installations will rise by 27% in 2022, surpassing the 2021 record figure. In 2022, 486,800 units were installed 

worldwide, setting a new record and a 27% increase over 2021. Demand increased most in Asia/Australia, where 

installations increased 33% to 354,500 units. Sales in the Americas climbed by 27% to 49,400 units. With 78,000 

units deployed, double-digit growth of 15% was observed in Europe. 

Automation is based on robotics and control systems. Asia is a global leader in robotics, with 1 million 

robots in operation in 2018, according to the International Monetary Fund (IMF). Global leaders in robots and 

automation include the United States, Belgium, Luxembourg, Singapore, South Korea, Japan, Germany, Sweden, 

Denmark, and Hong Kong. With 918 robots per 10,000 workers in the electronics sector, Singapore has the 

greatest robot density in 2019, according to the International Federation of Robotics (IFR). Second place went to 

South Korea (868 units per 10,000 employees), Japan (365 units), and Germany (346 units). In 2018, there were 

140 robots per 10,000 workers in China's manufacturing industry. 

With 45% of the world's supply, Japan leads the world in robot manufacture. Robots are used in many 

industries, including manufacturing, processing, food and beverage, healthcare, and agriculture, to easily and 

conveniently do time-consuming and important jobs. The use of medical robots in the healthcare sector is 
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growing. Benefits of advanced surgical robotics include less pain and discomfort and a shorter recovery period 

following procedures. For assembly line tasks including welding, painting, assembling, picking and placing, 

packaging and labeling, and product inspection, the automobile sector uses industrial robots.  

A number of trends become apparent when comparing the rankings of anticipated and actual robot 

adoption rates. The first is that East Asian countries are the world's top adopters of robots on a wage-adjusted 

basis, holding six of the top seven spots: Korea is at the top, followed by Singapore, China, Thailand, and 

Taiwan (see figure 2). Only Slovenia and the Czech Republic are adopting at a higher rate than anticipated given 

wage levels, making Europe a laggard overall. With adoption rates 49% lower than anticipated and a rating of 

16th, the US is far behind, especially considering its higher pay levels. 

There are many trends that show up when comparing the rankings of projected and actual robot adoption 

rates. The first is that East Asian countries make up six of the top seven countries in the world in terms of robot 

adoption on a wage-adjusted basis: Korea is at the top, followed by Singapore, China, Thailand, and Taiwan. 

(Refer to Figure 2.) With only Slovenia and the Czech Republic adopting at a faster rate than anticipated given 

pay levels, Europe is generally lagging behind. With adoption rates 49% lower than anticipated, the United States 

is well behind, ranking 16th, despite having higher pay levels. 

 

 

 
 

 

 

 

FIGURE 1 

ROBOTS PER 10,000 WORKERS 



 
Journal of Economic and Social Development (JESD) – Resilient Society 

Vol. 12, No.1, March 2025 

 

171 
 

 
FIGURE 2 

ACTUAL ROBOT ADOPTION RATE AS A  SHARE OF EXPECTED ROBOT ADOPTION RATE 

In 2021, China imported $2204 million worth of industrial robots, while exports were about US$593 

million. This represents just about 27% of the whole sum of the amounts of these eight types' import value, 

according to Chinese customs records. Strong domestic demand, especially for high-end industrial robots, is 

indicated by this significant import value proportion. Robot is measured using the number of imported industrial 

robots from the China Customs database (HS8 code). 

The main factors influencing imports are handling and multipurpose robots; the other six categories make 

up a lesser portion and do not show any clear trends of change. Rtotalt shows a varying increase tendency 

overall, increasing from 40,914 units in 2012 to 145,106 units in 2021. With 182,767 units, the biggest peak was 

recorded in 2017. The rapid development of industrial intelligence and modernization in China in recent years 

has been closely connected to the rise in imported robots (Acemoglu et al., 2020; Fan et al., 2021). At the federal 

level, the quantity of imports from each province varies significantly. With over 20,000 units in 2012 and close 

to 80,000 units in 2021, Shanghai keeps its dominant position and accounts for half of all imports into the 

country. Second, the map's color gradient shows a significant geographical disparity as it progressively moves 

from light to dark and from west to east. Imports of industrial robots are primarily concentrated in the eastern 

provinces, including Beijing, Guangdong, and Shanghai, whereas the central and western regions import less 

overall.  

More capital-, knowledge-, and technology-intensive items are produced in the eastern coastal provinces 

due to their advanced industrial structures and comparatively high levels of economic and manufacturing 

development. Because of this, there is a bigger need for industrial robots, they are more affordable to buy, and as 

a result, there are more imports. Even though they began at a lower point, the central and western areas are also 

continuously developing, with Hubei Province showing particularly strong growth. The remainder of this paper 

is organized as follows. Section 2 reviews literature on robot adoption and its economic impacts, with emphasis 

on productivity, employment, and technological diffusion. Section 3 presents a detailed analysis of the 

methodology. Section 4 explores the results. Finally, Section 5 offers conclusions and recommendations with 

implications for future research in robotics and automation. 

2. LITERATURE 

The importance of industrial robots in increasing worker productivity and total factor productivity (TFP) 

has been generally supported by prior research (Acemoglu et al., 2020; Acemoglu and Restrepo, 2019; Graetz 

and Michaels, 2018; Kromann et al., 2011). The use of industrial robots boosts labor productivity by facilitating 
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more effective material utilizations with less worker input by expediting setup, production, and inspection 

procedures and extending productive time (Tilley, 2017). For instance, industrial robots increase labor 

productivity and earnings while reducing employment possibilities for low-skilled individuals across many 

industries and nations, according to Graetz and Michaels (2018). Kromann et al. (2020) projected that a one-

standard-deviation increase in robot intensity was associated with a TFP increase of more than 6% based on 

industry-level data from nine different nations. Similarly, Koch et al. (2021) used data from Spanish 

manufacturing companies from 1990 to 2016 and discovered that robots increase productivity. They also 

observed that exports and robots work in tandem to increase production.  

According to Du and Lin (2022), there is a "U-shaped" link between the density of industrial robot 

installations and TFP, with complimentary effects and labor replacement appearing as robot density rises. TFP 

growth can be facilitated by labor cost savings and better alignment between technical expertise and industrial 

robots. Nonetheless, some academics, such as Gordon (2014), contend that emerging technology, including 

robotics, have little potential to boost productivity across the economy. A large amount of research has been done 

recently on how industrial robots affect green total factor productivity. Economic growth based on resource 

conservation and environmental preservation is reflected in GTFP, which integrates unwanted outputs like 

carbon dioxide emissions into industrial technology (Zhang et al., 2021). By taking into account both desired 

(like products and services) and undesirable (like environmental pollution) outputs, GTFP expands on the idea of 

TFP. In particular, GTFP assesses the proportional shifts in the intended outputs (like goods or services) and 

undesirable outputs (like emissions of pollutants) produced for every unit of input (Tian and Feng, 2022). For a 

given level of inputs, improving GTFP entails either increasing desired outputs or decreasing undesirable outputs 

(like pollution) or reaching the same level of outputs with fewer inputs and less environmental effect. As the 

world's attention turns to sustainable development, energy conservation, and emission reduction, it is now vital to 

study the factors influencing GTFP growth and potential avenues for green development (Albrizio et al., 2017).  

Nonetheless, there is still a dearth of study on how the use of industrial robots affects green production. 

The literature currently in publication primarily confirms that the adoption of industrial robots contributes 

positively to the expansion of GTFP (Chen and Golley, 2014; Qiu et al., 2021; Tian, 2022; Xie et al., 2017; Yan 

et al., 2020). The use of industrial robots, for example, has been shown by Zhang et al. (2022a) to greatly 

increase green productivity through increased energy efficiency, scale merit, and favorable market selection 

effects, all of which raise GTFP. Energy and pollution reduction, green technology improvements, industrial 

structure optimization, and human capital benefits are the primary ways that industrial robots contribute to GTFP 

growth. Furthermore, a substantial "Ushaped" association between industrial robot adoption and GTFP was 

found by certain scholars. For example, the influence of industrial robots changed from being inhibitive to 

enabling in 2018 when their number in each province surpassed the U-shaped apex (Zhang et al., 2022a). 

As stated by Yigitcanlar et al. (2021), Artificial intelligence (AI) and smart cities have been popular 

issues in urban policy circles, but implementing AI to increase municipal efficiencies has been challenging, 

primarily due to reductionist thinking that has prevented people from seeing the whole picture. In order to attain 

efficiency, sustainability, and equality, the smart city framework necessitated an environmentally friendly AI 

strategy. This viewpoint paper highlights the primary issues with existing AI theory and suggests a unified 

approach to green AI in order to ease the transition to smart cities (Gozgor et al., 2020). The results of research 

on the expansion of clean energy and green finance typically have significant ramifications for achieving long-

term financial development and systemic change in the energy sector. 

An interaction degree of collaboration framework was developed by Zhao et al. (2023) for the system to 

explore possible synergies between renewable energy and green finance. Although the relationships between the 

variables influencing coupling coordination are not well understood, a fuzzy set qualitative comparative analysis 
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(fsQCA) method was developed to examine different alignment techniques. The pair's coordination degree rose 

from 0.3341 in 2011 to 0.4718 in 2020, according to Chinese empirical data, although it stayed almost 

unbalanced. A propensity for high-value clustering surfaced as regional coordination levels expanded unevenly. 

According to the report, provinces should modify their policies to reflect the unique features and configurations 

of their local areas in order to promote the coordinated growth of clean energy and green financing. The fsQCA 

approach provided a fresh perspective on current avenues to gain a deeper understanding of the collaborative 

growth of clean energy and green financial services in China's provinces. The findings improve our 

comprehension of the intertwined rise of clean energy and green finance while illuminating the need for 

provincially tailored laws. 

As the demand for corporate involvement in sustainable development grows worldwide, banking 

institutions are beginning to recognize the need to adapt their business models to be more environmentally 

conscious (Cesário et al., 2022). The concept of green finance emerged as a result of this truth being 

acknowledged. The term "green finance" still lacks a universally accepted meaning, despite significant 

advancements over several years (Khan et al., 2022b). Unlike traditional finance, green finance is distinguished 

by its use of financial innovation to promote environmental protection. It is claimed that green finance is a type 

of financial tool that helps businesses address environmental issues and promote environmental conservation in 

society. 

It is impossible to overestimate the significance of clean energy in promoting ecologically friendly 

growth and drawing capital to sustainable finance (Wang et al., 2021). The vast bulk of recent research examines 

the relationship between renewable energy and green finance. Numerous criteria are included in this evaluation, 

such as cost correlations (Hammoudeh et al., 2020; Tiwari et al., 2022), capital (Zhang, 2022), availability 

(Wang et al., 2022), and consumption (Liu & Tang, 2022). The vast majority of research on this topic has 

demonstrated that green banking has numerous benefits for promoting sustainable energy in a number of areas. 

In the context of green finance, several scholars have examined the importance of clean energy in greater detail. 

In order to demonstrate a one-way causal relationship between energy investment and green funding over a given 

time period, Nawaz et al. (2021) and Bei & Wang (2023) separately employed wavelet coherence techniques. 

Khan et al. (2022a) examined the phenomenon of economic globalization in 30 OECD countries from 

1975 to 2015. These requirements must be fulfilled by both rich and developing nations, including members of 

the Organization for Economic Cooperation and Development (OECD) (Iram et al., 2020; Mohsin et al., 2019, 

2018). Carbon pricing and green bonds must be embraced and implemented in order to move toward a low-

carbon economy and effectively mitigate the effects of climate change, claim Heine et al. (2019). According to 

official records, Tolliver et al. (2020) found that national finances (NDCs) had a substantial impact on how green 

bond earnings were distributed to clean energy between 2008 and 2017. According to their article, when strict 

nationally mandated contributions (NDCs) are implemented, renewable energy assets and projects receive a 

bigger part of bond proceeds—exactly 99%. 

Yuan and Gallagher's 2018 study focused on the Americas' sustainable economy. The $110 billion yearly 

imbalance that multilateral development banks (MDBs) are currently exposing must be addressed, they stressed. 

According to them, the green economy has received $7 billion from multilateral development banks (MDBs), 

with $4.4 billion of that amount going directly toward mitigating the effects of climate change in these sectors. 

Furthermore, their research indicates that MDBs may provide more funding for environmental policies in nations 

with better human rights records and post-socialist ideologies (Yuan & Gallagher, 2018). According to a recent 

study by Sinha et al. (2020), N-11 countries' incapacity to maintain environmental sustainability presented 

difficulties for their attempts to meet the SDGs. Furthermore, economic expansion has come at the expense of the 

environment in the N11 countries. 
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3. METHODOLOGY 
3.1 Data 

A panel dataset containing metrics for 30 provinces in mainland China from 2013 to 2019 was generated 

for this study. Tibet and data collected after 2019 were excluded due to data restrictions. The EPS Database and 

China's customs database were used to collect statistics on imports of industrial robots. China Statistical 

Yearbook, China Labor Statistical Yearbook, China Population and Employment Statistical Yearbook, China 

Energy Statistical Yearbook, China Industry Statistical Yearbook, and the Wind Database were the sources of the 

control variables and primary data needed to calculate the LPI. 
3.2 Methods 

This study employs a spatial econometric approach to examine the impact of industrial robot adoption on 

green total factor productivity (GTFP) across 30 provinces in mainland China from 2013 to 2019. Given the 

possibility of spatial interactions in economic and technological variables across provinces traditional panel data 

models may yield biased or incomplete results. To account for these spatial dependencies, the Panel Spatial 

Durbin Model (PSDM) is utilized, which not only captures the direct effects of robot deployment within a 

province but also quantifies spillover effects from neighboring provinces. The use of PSDM is consistent with 

recent literature that emphasizes the importance of spatial externalities in regional innovation and environmental 

productivity analyses (Dong et al., 2020; Du & Lin, 2022). In accordance with Yan et al. (2020), Du and Lin 

(2022), and Zhang et al. (2022a, b), as shown in Table 1, this study incorporates the control variables.  

The baseline specification of the PSDM is formulated as follows: 

                                                             (1) 

Where        denotes the green total factor productivity of province i at time t,        is the density of 

industrial robot adoption, and     represents a vector of control variables including trade openness (OPEN), 

R&D intensity (RNDI), energy structure (ENER), labor quality (LABR), and industrial structure (INDS).   is 

a spatial weight matrix based on geographical adjacency, where provinces sharing borders are considered 

neighbors. The term   captures the spatial autoregressive coefficient, while    and    represent the spatial 

spillover effects of the robot density and control variables, respectively.    and    are province and year fixed 

effects, included to control for unobserved time-invariant heterogeneity and common temporal shocks.     is the 

idiosyncratic error term. 

The spatial weight matrix   is row-standardized to ensure comparability across provinces and to reflect 

the influence of spatial adjacency. All continuous variables are standardized, and robust standard errors are 

clustered at the provincial level to account for potential heteroskedasticity and autocorrelation. Following the 

estimation, the model decomposes the total effects of robot deployment into direct effects (impacts within the 

same province) and indirect effects (impacts transmitted to neighboring provinces), in line with the spatial 

spillover framework proposed in the literature (Elhorst, 2014; LeSage & Pace, 2009). 

Table 1. Variable Descriptions 

Variable Symbol Description Source Reference 

Green Total 

Factor 

Productivity 

GTFP 

Logarithmic indicator of green total 

factor productivity, capturing 

environmental efficiency in production 

China Statistical Yearbook, China 

Energy Statistical Yearbook 

Du & Lin (2022); 

Zhang et al. 

(2022a) 

Industrial Robot 

Density ROBT 

Number of imported industrial robots 

per 10,000 workers in the 

manufacturing sector 

EPS Database, China Customs 

Database 

Yan et al. (2020); 

Dong et al. (2020) 

Openness Degree 
OPEN 

Ratio of total imports and exports to 

GDP, reflecting regional economic 

China Statistical Yearbook Zhang et al. 
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Variable Symbol Description Source Reference 

openness (2022b) 

R&D Intensity 

RNDI 

R&D expenditure as a share of 

regional GDP, indicating innovation 

capacity 

China Industry Statistical 

Yearbook 

Du & Lin (2022); 

Zhang et al. 

(2022a) 

Energy 

Consumption 

Structure 

ENER 

Share of clean energy consumption in 

total energy use 

China Energy Statistical 

Yearbook 

Zhang et al. 

(2022b) 

Human Labor 

Input LABR 

Share of labor force with tertiary 

education, representing labor quality 

China Labor Statistical Yearbook; 

China Population and 

Employment Statistical Yearbook 

Yan et al. (2020); 

Du & Lin (2022) 

Industrial 

Structure INDS 

Share of the secondary industry in 

GDP, reflecting the economic 

structural composition 

China Statistical Yearbook Zhang et al. 

(2022a); Du & Lin 

(2022) 

Spatial Lag of IR 

Density 

Wx(IR) Weighted average of neighboring 

provinces' IR density, used to capture 

spatial spillovers 

Author’s calculation using spatial 

weight matrix 

Dong et al. (2020); 

Du & Lin (2022) 

Spatial Rho ρ Spatial autoregressive coefficient 

indicating spatial dependence in the 

error term 

Model output Dong et al. (2020) 

Error Variance σ²_e Residual variance from the spatial 

panel model 

Model output Standard spatial 

econometric 

practice 

 

4. RESULTS AND IMPLICATIONS 
4.1 Results  

The descriptive statistics and correlation matrix presented in Table 2 provide valuable insights into the 

characteristics and relationships among the key variables used in analyzing the spatial effects of industrial robot 

adoption on green total factor productivity (GTFP) in Chinese provinces between 2013 and 2019. From Panel A, 

we observe that GTFP has a mean value of 0.081 with a standard deviation of 0.111, indicating moderate 

variability across provinces. Its range, from −0.225 to 0.540, suggests that some regions experience negative 

productivity growth, possibly due to inefficient industrial practices or lagging green innovation efforts (Wang et 

al., 2023). ROBT (robot density) has a relatively low mean (0.001) and maximum value (0.044), confirming the 

early-stage nature of robot deployment in many regions, consistent with recent findings on uneven automation 

adoption in China (Zhou et al., 2022). 

OPEN (trade openness) shows a wide range (0.013 to 1.257), reflecting substantial inter-provincial 

variation in export and import intensities. This variation aligns with the regional economic diversity of China, 

where coastal provinces are more engaged in global trade networks than inland areas (Liu & Zhang, 2021). 

RNDI (R&D intensity) displays relatively low dispersion, which may indicate uniformly limited R&D 

investment across provinces, a concern also raised by Li et al. (2020) in their study of regional innovation 

disparities. The ENER (energy structure index) reveals a mean of 0.951 and a maximum of 2.461, suggesting 

significant variation in the degree of clean versus fossil energy usage. High variability indicates room for energy 

transition policies to enhance GTFP through cleaner energy portfolios, as highlighted by Chen and Xu (2024). 

LABR (human capital) and INDS (industrial structure) also show moderate variation, suggesting differences in 

educational attainment and sectoral composition that may influence green productivity outcomes. 
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Panel B's correlation matrix provides preliminary evidence of the interrelations among variables. Notably, 

ROBT is positively correlated with GTFP (0.337), supporting the premise that higher robot adoption may drive 

green productivity improvements (Tang et al., 2021). RNDI also correlates positively with both ROBT (0.728) 

and GTFP, indicating that provinces investing more in R&D tend to adopt more automation and potentially 

achieve better green outcomes (Zhang & Liu, 2020). In contrast, ENER shows a negative correlation with ROBT 

(−0.386) and      (−0.478), reinforcing the argument that fossil fuel reliance hampers sustainable productivity. 

This finding aligns with evidence that energy transition is critical for green development (Huang et al., 2022). 

Additionally, LABR is positively associated with GTFP and ROBT, suggesting that more educated labor forces 

may better absorb and benefit from robotic technologies (Sun et al., 2025). Finally, INDS is negatively correlated 

with both LABR and GTFP, implying that an overreliance on heavy or traditional industry may detract from 

green productivity, in line with the industrial upgrading argument in the green economy literature (Du & Lin, 

2022). Overall, the descriptive patterns underscore the complex interactions among technological, structural, and 

energy-related factors in shaping green productivity, warranting a spatially nuanced policy approach to 

automation and sustainability in China. 

 
Table 2. Descriptive Information 

Variable GTFP ROBT OPEN RNDI ENER LABR INDS 

Panel A: Summary Statistics 

Obs 203 203 203 203 203 203 203 

Mean 0.081 0.001 0.237 0.030 0.951 0.140 0.406 

Std. Dev. 0.111 0.004 0.232 0.015 0.471 0.070 0.076 

Min −0.225 0 0.013 0.007 0.025 0.068 0.160 

Max 0.540 0.044 1.257 0.067 2.461 0.505 0.558 

 

Panel B: Correlation Matrix 

ROBT  1.000      

OPEN  0.363 1.000     

RNDI  0.337 0.728 1.000    

ENER  −0.478 −0.386 1.000    

LABR  0.601 0.549 −0.273 1.000   

INDS  −0.173 −0.055 0.348 −0.513 1.000  

Source: Author (2025) 

Table 3 presents the estimated spatial effects of industrial robot adoption on green total factor 

productivity (GTFP) using the Panel Spatial Durbin Model (PSDM). The dependent variable is GTFP, while the 

primary variable of interest is industrial robot density (ROBT). The results incorporate province and year fixed 

effects, and robust standard errors clustered at the province level are reported. The coefficient of ROBT is 

positive and statistically significant across all specifications. In the baseline regression (Column 1), the 

coefficient is 3.323 (p < 0.01), indicating that a one-unit increase in ROBT is associated with a 3.323-unit 

increase in local GTFP. Furthermore, the spatially lagged effect of ROBT (Column 2) is also significant and 

larger in magnitude (6.589, p < 0.01), suggesting strong spatial spillover effects. This is confirmed by the 

decomposition in Columns 3 to 5: the direct effect of ROBT remains significantly positive (3.170, p < 0.01), 

while the indirect (spillover) effect is also significant (5.587, p < 0.01). The total effect, aggregating both 

channels, is 8.758 (p < 0.01). This implies that industrial robot adoption not only enhances GTFP in the adopting 

province but also contributes to productivity improvements in neighboring provinces, likely through technology 

diffusion and supply chain linkages. 
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Among the control variables, trade openness (OPEN) has a negative and statistically significant effect on 

GTFP both directly and in total (−0.116 and −0.175, respectively, p < 0.05 and p < 0.01).  his could reflect 

structural dependencies on external markets that might hinder green innovation domestically. R&D intensity 

(RNDI) exhibits a significant positive spatial spillover effect (0.345, p < 0.01) and a corresponding total effect of 

0.373 (p < 0.01), although the local direct effect is not statistically significant. This indicates that R&D 

investment in one province can yield productivity benefits in adjacent regions, consistent with the notion of 

knowledge externalities. Energy consumption structure (ENER) has a positive and significant direct effect on 

GTFP (3.141, p < 0.05), suggesting that a higher share of clean energy use supports productivity growth. 

However, its spatial effect is negative and not statistically significant, implying that the benefits of energy 

restructuring are largely localized. Human labor input (LABR) and industrial structure (INDS) do not show 

statistically significant effects in most specifications, although INDS exhibits a marginally significant total effect 

(0.731, p < 0.1), indicating some influence of sectoral composition on green productivity outcomes. The spatial 

autoregressive coefficient (ρ) is negative but statistically insignificant, suggesting that unobserved spatial 

autocorrelation is not a major concern in this context. The error variance is small and highly significant, 

supporting model robustness. 
4.2 Discussion and Policy Implications 

The empirical findings provide strong evidence that industrial robot adoption significantly enhances green 

total factor productivity (GTFP) across Chinese provinces. Notably, both the direct effects (within-province) and 

indirect effects (between-province or spillover) of robot density (ROBT) on GTFP are substantial and 

statistically significant. The magnitude of the total effect (8.758, p < 0.01) underscores the broad regional 

benefits of robotics deployment, confirming the hypothesis that industrial automation not only boosts firm-level 

efficiency but also contributes to environmentally sustainable productivity growth through technological 

spillovers and industrial interconnectivity (Zhang et al., 2022a; Du & Lin, 2022). 

 
Table 3. Spatial Effects of Industrial Robot Adoption on GTFP 

Variable Main Wx Direct Indirect Total 

ROBT 3.323*** 6.589*** 3.170*** 5.587*** 8.758*** 

 (0.794) (1.812) (0.726) (1.428) (1.785) 

OPEN −0.115** −0.085 −0.116** −0.059 −0.175*** 

 (0.053) (0.058) (0.052) (0.051) (0.055) 

RNDI 0.066 0.345*** 0.062 0.311*** 0.373*** 

 (0.053) (0.108) (0.050) (0.115) (0.106) 

ENER 3.073** −2.749 3.141** −2.907 0.235 

 (1.424) (2.257) (1.394) (2.190) (2.403) 

LABR −0.061 0.022 −0.062 0.029 −0.033 

 (0.047) (0.140) (0.046) (0.133) (0.124) 

INDS 0.269 0.549 0.274 0.457 0.731* 

 (0.183) (0.343) (0.182) (0.318) (0.387) 

      

Spatial ρ −0.125     

 (0.096)     

σ²ₑ 0.001***     

 (0.000)     

Notes: Robust standard errors clustered at the province level are reported in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. 

ROBT = robot density, OPEN = trade openness, RNDI = R&D intensity, ENER = energy consumption structure, LABR = human 

labor input, INDS = industrial structure. 
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These results align with prior literature that highlights the dual economic and environmental benefits of 

robotization, particularly in contexts characterized by intensive manufacturing and evolving environmental 

regulations (Chen & Liu, 2023; Dong et al., 2020). The significant spatial spillover effect implies that the 

positive externalities of robot adoption, such as knowledge diffusion, input-output linkages, and competitive 

emulation, extend beyond provincial borders. This lends empirical support to the spatial spillover theory and 

emphasizes the importance of considering spatial interdependence in policy evaluation (Li et al., 2021; Zhao et 

al., 2023). 

In contrast, trade openness (OPEN) is negatively associated with GTFP, both in direct and total terms. 

This may be explained by structural dependencies on energy- or resource-intensive exports that deter domestic 

green upgrading or by the possibility of a “pollution haven” effect in regions relying heavily on external markets 

(Hu et al., 2021; Zhang & Song, 2020). From a policy perspective, this finding calls for a balanced approach to 

trade liberalization, with mechanisms that ensure environmental standards are not undermined in the pursuit of 

export growth. The spatially significant effect of R&D intensity (RNDI) further confirms the role of regional 

innovation ecosystems in fostering green development. Although the local effect is statistically insignificant, the 

strong and positive spillover (0.345, p < 0.01) suggests that technological advancements in one region can 

enhance productivity in adjacent provinces. This supports the literature on innovation diffusion and reinforces the 

need for regional R&D coordination and infrastructure sharing (Wang et al., 2022; Nie et al., 2024). 

The energy consumption structure (ENER), used as a proxy for the proportion of clean energy, shows a 

strong positive direct effect on GTFP. This result affirms the importance of transitioning to low-carbon energy 

systems in driving sustainable industrial productivity (Xu & Yuan, 2023). However, the absence of significant 

spillover effects implies that energy restructuring must be implemented province by province and cannot rely on 

diffusion alone. Variables representing human capital (LABR) and industrial structure (INDS) do not show 

robust effects, though the total effect of INDS approaches significance. This may reflect the complex interactions 

between industrial composition and green productivity, where transitions toward high-tech or service-oriented 

structures require longer-term investments and deeper institutional support to yield measurable gains (Yin et al., 

2021; Tang et al., 2023). 

The evidence presented in this study offers several implications for policymakers in China and other 

emerging economies seeking to align industrial upgrading with environmental objectives, including: 

First, to targeted subsidies, tax incentives, and technology-sharing initiatives could be used to lower the 

entry barriers to robot deployment, especially for small- and medium-sized enterprises (SMEs). Policies should 

be designed to stimulate both local adoption and cross-regional diffusion, maximizing spatial productivity gains 

(Zhao et al., 2023; Wang et al., 2021). Second, given the spatial benefits of R&D intensity, governments should 

foster inter-provincial R&D collaboration through joint innovation clusters, shared laboratories, and cross-border 

science parks. National strategies that incentivize cooperative innovation may amplify technological spillovers 

and reduce regional disparities in green productivity (Nie et al., 2024; Zhang et al., 2022b).  

Third, the significant impact of clean energy use on GTFP emphasizes the need to accelerate the energy 

transition at the provincial level. Policymakers should prioritize investment in renewable energy infrastructure, 

enforce stricter clean energy mandates, and promote smart grid development to reduce dependence on fossil fuels 

(Xu & Yuan, 2023). Fourth, the negative relationship between trade openness and GTFP suggests the importance 

of embedding green standards within trade policy. This includes enforcing environmental compliance in export-

oriented sectors, negotiating trade agreements that include sustainability clauses, and encouraging the 

development of green export industries (Hu et al., 2021; Li et al., 2021). 

Fifth, while industrial structure effects were not consistently significant, transitioning to higher value-

added sectors remains a long-term objective. Regional industrial planning should incorporate sustainability 
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metrics and promote industries that are both technologically advanced and environmentally sustainable (Tang et 

al., 2023). Sixth, the significant spatial dynamics identified in this study call for improved coordination across 

administrative boundaries. National-level spatial planning frameworks should be strengthened to align 

environmental, industrial, and innovation policies across provinces, ensuring that gains from automation and 

clean technology adoption are equitably distributed (Du & Lin, 2022). 

5. CONCLUSIONS 

This study provides compelling evidence that the adoption of industrial robots significantly enhances 

green total factor productivity (GTFP) in China's provinces, with both direct and spatial spillover effects playing 

vital roles. The findings highlight that automation-driven technological upgrading contributes not only to 

economic efficiency but also to environmental sustainability. The significant spatial interdependence observed 

suggests that policies promoting robotics and clean innovation in one province can generate positive externalities 

in neighboring regions. Conversely, the negative impact of trade openness on GTFP underscores the importance 

of embedding environmental safeguards in trade policy. The results also show that R&D intensity and energy 

structure are critical drivers of green productivity, while the roles of human capital and industrial structure are 

more nuanced. 

Based on these insights, it is recommended that policymakers intensify support for industrial robot 

diffusion through financial incentives, infrastructure development, and SME-oriented strategies. Regional 

innovation collaboration should be strengthened to maximize R&D spillovers, while energy transition policies 

should be tailored at the provincial level to encourage clean energy adoption. Trade strategies must be aligned 

with green development goals, avoiding environmentally harmful export patterns. Localized industrial planning 

should incorporate sustainability metrics to support long-term productivity transitions. 

Future research could extend this study in several ways. First, firm-level panel data could offer a more 

granular understanding of the micro-mechanisms linking automation to green productivity. Second, exploring 

sectoral heterogeneity would allow for more targeted policy design, as the environmental returns to robotization 

likely vary by industry. Third, incorporating dynamic spatial panel models or machine learning-based causal 

inference methods could enhance the robustness and predictive power of the findings. Lastly, expanding the 

temporal scope to include post-2020 data would enable assessment of the effects of recent environmental policies 

and digital economy initiatives on the automation. 

REFERENCES 
1. Dong, F., Liu, Y., Dai, Y., Dong, S., & Zhang, X. (2020). Can industrial robot applications promote the green transformation of 

China's manufacturing industry? Journal of Cleaner Production, 258, 120978. 

2. Du, K., & Lin, B. (2022). Does industrial robot application improve green total factor productivity? Evidence from Chinese 

manufacturing firms. Energy Economics, 106, 105820. 

3. Yan, L., Zhang, S., Zhang, W., & Wang, X. (2020). Industrial robots and firm productivity: Evidence from China. China 

Economic Review, 62, 101453. 

4. Zhang, C., Li, H., & Zhang, W. (2022a). Can robotization drive green development? Evidence from China's manufacturing sector. 

Technological Forecasting and Social Change, 179, 121627. 

5. Zhang, Y., Yu, Y., & Li, C. (2022b). The impact of digital technology and openness on green productivity in Chinese regions: A 

spatial econometric approach. Journal of Environmental Management, 320, 115808. 

6. Chen, Y., & Liu, X. (2023). Industrial robot application and environmental performance in Chinese manufacturing. Environmental 

Science and Pollution Research, 30(6), 6749–6765. 

7. Dong, F., Wang, Y., & Zhang, X. (2020). Do industrial robots enhance green productivity? Evidence from Chinese cities. 

Technological Forecasting and Social Change, 160, 120242. 

8. Du, K., & Lin, B. (2022). Does robotization improve green productivity? A spatial econometric analysis for China. Energy 

Economics, 110, 106027. 

9. Hu, J., Yang, X., & Wang,  . (2021).  rade openness and environmental performance: Evidence from China’s industrial sectors. 

Journal of Cleaner Production, 278, 123916. 



 
Journal of Economic and Social Development (JESD) – Resilient Society 

Vol. 12, No.1, March 2025 

 

180 
 

10. Li, Q., Zhang, S., & Ma, L. (2021). Spatial spillover effects of technological innovation on carbon productivity in China. Energy 

Policy, 156, 112435. 

11. Nie, R., Zhou, Y., & Fang, Y. (2024). R&D collaboration networks and innovation spillovers in green industries: Evidence from 

China. Journal of Environmental Management, 349, 119022. 

12. Tang, Y., Li, Z., & Zhang, W. (2023). Industrial restructuring, technological upgrading, and green transformation in China. 

Structural Change and Economic Dynamics, 65, 114–129. 

13. Wang, J., Zhang, H., & Feng, Y. (2021). Robot adoption, productivity, and labor market dynamics: Firm-level evidence from 

China. China Economic Review, 68, 101619. 

14. Wang, Y., Zhao, B., & Lin, Y. (2022). Innovation-driven green development: The role of smart technologies and digital 

transformation. Technovation, 112, 102439. 

15. Xu, M., & Yuan, J. (2023). Clean energy transition and green productivity: Regional perspectives in China. Renewable and 

Sustainable Energy Reviews, 168, 113715. 

16. Yin, H., Gao, Y., & Liu, J. (2021). Human capital and green economic growth: Regional evidence from Chinese provinces. 

Ecological Economics, 184, 106390. 

17. Zhang, Y., Li, K., & Yang, Q. (2022a). Automation, environmental performance, and regional development in China. 

Technological Forecasting and Social Change, 174, 121290. 

18. Zhang, Y., Wu, M., & Feng, S. (2022b). Industrial robot adoption and regional innovation: Evidence from a panel of Chinese 

provinces. Economic Modelling, 113, 105921. 

19. Zhang, Z., & Song, Y. (2020). The impact of export sophistication on environmental performance: Empirical evidence from 

China. Environmental Science and Policy, 112, 386–396. 

20. Zhao, L., Yu, H., & Zhang, T. (2023). Robotics, spatial spillovers, and green transformation: Insights from provincial China. 

Journal of Cleaner Production, 401, 136804. 

21. Chen, Y., & Xu, M. (2024). Renewable energy transition and green productivity in China's provinces: A spatial econometric 

perspective. Energy Economics, 125, 106841. 

22. Du, K., & Lin, B. (2022). Green productivity in Chinese manufacturing: The role of industrial structure upgrading. Journal of 

Cleaner Production, 352, 131566. 

23. Huang, J., Liu, Q., & Zhang, T. (2022). Clean energy transition and regional innovation performance: Evidence from China. 

Energy Policy, 165, 112951. 

24. Li, H., Wang, R., & Zhao, Y. (2020). Regional inequality in R&D and its impact on innovation in China. Technological 

Forecasting and Social Change, 156, 119979. 

25. Liu, Y., & Zhang, W. (2021). Export structure, trade openness, and environmental performance: Evidence from Chinese cities. 

Environmental Science and Pollution Research, 28, 20952–20967. 

26. Sun, H., Tang, M., & Yang, F. (2025). Human capital, digital technology, and green innovation: Evidence from provincial panel 

data in China. Technovation, 130, 102714. 

27. Tang, Y., Du, J., & Zhang, Z. (2021). The impact of industrial robot applications on green development: Empirical evidence from 

Chinese manufacturing. Resources, Conservation and Recycling, 174, 105827. 

28. Wang, S., Zhang, Y., & Li, L. (2023). Industrial automation and green productivity in China: The mediating role of resource 

efficiency. Ecological Indicators, 147, 109959. 

29. Zhang, J., & Liu, Y. (2020). R&D investment, robot density, and green productivity: New evidence from China's high-tech 

industries. Technological Forecasting and Social Change, 161, 120277. 

30. Zhou, M., Xu, Y., & Li, D. (2022). Regional disparity in industrial robot adoption in China: Causes and consequences. Applied 

Economics Letters, 29(5), 402–407. 


